MENUJU PERTANIAN ORGANIK

SELAMAT DATANG

Selasa, 20 September 2011

Klimatologi untuk Pertanian


Klimatologi merupakan ilmu tentang atmosfer. Mirip dengan meteorologi, tapi berbeda dalam kajiannya, meteorologi lebih mengkaji proses di atmosfer sedangkan klimatologi pada hasil akhir dari proses-proses atmosfer.
Klimatologi berasal dari bahasa Yunani Klima dan Logos yang masing2 berarti kemiringan (slope) yg di arahkan ke Lintang tempat sedangkan Logos sendiri berarti Ilmu. Jadi definisi Klimatologi adalah ilmu yang mencari gambaran dan penjelasan sifat iklim, mengapa iklim di berbagai tempat di bumi berbeda , dan bagaimana kaitan antara iklim dan dengan aktivitas manusia. Karena klimatologi memerlukan interpretasi dari data2 yang banyak dehingga memerlukan statistik dalam pengerjaannya, orang2 sering juga mengatakan klimatologi sebagai meteorologi statistik (Tjasyono, 2004)
Iklim merupakan salah satu faktor pembatas dalam proses pertumbuhan dan produksi tanaman. Jenis2 dan sifat2 iklim bisa menentukkan jenis2 tanaman yg tumbuh pada suatu daerah serta produksinya. Oleh karena itu kajian klimatologi dalam bidang pertanian sangat diperlukan. Seiring dengan dengan semakin berkembangnya isu pemanasan global dan akibatnya pada perubahan iklim, membuat sektor pertanian begitu terpukul. Tidak teraturnya perilaku iklim dan perubahan awal musim dan akhir musim seperti musim kemarau dan musim hujan membuat para petani begitu susah untuk merencanakan masa tanam dan masa panen. Untuk daerah tropis seperti indonesia, hujan merupakan faktor pembatas penting dalam pertumbuhan dan produksi tanaman pertanian.Selain hujan, unsur iklim lain yang mempengaruhi pertumbuhan tanaman adalah suhu, angin, kelembaban dan sinar matahari.
Setiap tanaman pasti memerlukan air dalam siklus hidupnya, sedangkan hujan merupakan sumber air utama bagi tanaman. Berubahnya pasokan air bagi tanaman yg disebabkan oleh berubahnya kondisi hujan tentu saja akan mempengaruhi siklus pertumbuhan tanaman. Itu merupakan contoh global pengaruh ikliim terhadap tanaman. Di indonesia sendiri akibat dari perubahan iklim, yaitu timbulnya fenomena El Nino dan La Nina. Fenomena perubahan iklim ini menyebabkan menurunnya produksi kelapa sawit. Tanaman kelapa sawit bila tidak mendapatkan hujan dalam 3 bulan berturut-turut akan menyebabkan terhambatnya proses pembungaan sehingga produksi kelapa sawit untuk jangka 6 sampai 18 bulan kemudian menurun. Selain itu produksi padi juga menurun akibat dari kekeringan yang berkepanjangan atau terendam banjir. Akan tetapi pada saat fenomea La Nina produksi padi malah meningkat untuk masa tanam musim ke dua.
Selain hujan, ternyata suhu juga bisa menentukkan jenis2 tanaman yg hidup di daerah2 tertentu. Misalnya perbedaan tanaman yang tumbuh di daerah tropis, gurun dan kutub. Indonesia merupakan daerah tropis, perbedaan suhu antara musim hujan dan musim kemarau tidaklah seekstrim perbedaan suhu musim panas dan musim kemarau di daerah2 sub tropis dan kutub. Oleh karena itu untuk daerah tropis, klasifikasi suhu lebih di arahkan pada perbedaan suhu menurut ketinggian tempat. Perbedaan suhu akibat dari ketinggian tempat (elevasi) berpengaruh pada pertumbuhan dan produksi tanaman. Sebagai contoh, tanaman strowbery akan berproduksi baik pada ketinggian di atas 1000 meter, karena pada ketinggian 1000 meter pebedaan suhu antara siang dan malam sangat kontras dan keadaan seperti inilah yg dibutuhkan oleh tanaman strowbery

Pemanasan Global (catatan mengenai sebabnya)

grk-3Pemanasan global adalah kejadian meningkatnya temperatur rata-rata atmosfer, laut dan daratan Bumi (wikipedia) .
Gas rumah kaca (CO, CO2, CFCs, O3, NOx) dituduh sebagai penyebab dari pemanasan global. Akan tetapi seandai bumi ini tidak mempunyai gas2 rumah kaca maka bumi ini akan mempunyai suhu 33 derajat celesius dibawah 0. konsetrasi gas2 rumah kaca mengalami peningkatan pada tahun2 belakangan ini. Ada yang bilang karena ulah manusia, ada yang bilang karena aktifitas geologi, ada yang bilang karena siklus carbon di laut terhambat. Entah si CO2 datang dari mana, yg jelas peningkatan konsentrasi gas rumah kaca ini menyebabkan jumlah energi matahari yang dipantulkan kembali kebumi menjadi lebih besar atau dengan kata lain ada hubungan antara peningkatan konsentrasi gas rumah kaca di atmosfer dengan pemanasan global. Gas CO2 menyumbang 50% dari pemanasan global, sedangkan gas CFCs, CH4, O3, dan NOx masing-masing menyumbang lebih kurang 20%, 15%, 8% dan 7% bagi pemanasan global.
konsentrasi-grk-2
kelompok studi lingkungan Federal Climate Change Science Program pada tanggal 2 mei 2006 mengeluarkan statement bahwa manusia mempegaruhi terjadinya perubahan iklim global. Salah satu akibat dari pemanasan global itu adalah perubahan iklim. Waowww… Ternyata salah satu yang dituduh itu manusia yg menyebabkan kandungan CO2 di bumi meningkat. Menurut pendukung teori ini, CO2 di bumi telah meningkat secara drastis akibat dari aktivitas manusia dan aktivitas manusia pula yang menyebabkan terhambatnya penyerapan CO2 kembali oleh tanaman. Manusia berperan ganda deh dalam peningkatkan CO2 di atmosfer, Udah meningkatkan, trus menghambat lagi penyerapannya… wedew…kacau…… Tanaman yg dalam tulisan ini saya konotasikan dengan hutan yg merupakan penyerap utama CO2 di atmosfer yang berhubungan langsung dengan aktivitas manusia. makanya indonesia dianggap sebagai paru2 dunia. Bayangin aja tuh kalo paru2 kita ilang, gimana bisa idup…..??? akan tetapi beberapa penelitian lain menyatakan bahwa ternyata manusia (antrhopogenic) hanya menyumbangkan 5% dari produksi CO2 di dunia ini.
Seperti yg ditulis diatas, aktifitas manusia yg menggunakan bahan bakar fosil itu dituduh sebagai biang keladi peningkatan CO2 diatmosfer, tapi ada yang bilang kalo bukan itu penyebabnya. pendukung teori ini mencoba menjelaskan kalo ternyata pemanfaatan bahan bakar fosil (selain batu bara) tidak selalu menyebabkan peningkatan kadar CO2 di atmosfer. pada saat produksi migas menurun akibat embargo, ternyata konsentrasi CO2 tetap meningkat, lho kok…..?????? tetapi ada contoh kasus, untuk menghasilkan energi sebesar 1 kWh, pembangkit listrik yang menggunakan batubara mengemisikan sekitar 940 gram CO2. Sementara pembangkit listrik yang menggunakan minyak bumi dan gas alam menghasilkan emisi gas rumah kaca sekitar 798 dan 581 gram C02. jadi???
aktifitas gunung api merupakan salah satu penyumbang gas CO2 di udara. Pada tanggal 14-15 Juni 1991 Gunung Pinatubo di Filipina. dari gambar yg posting disini terlihat bahwa temperatur bumi setelah tahun 1990, meningkat drastis. Nah para ahli geologi menganggap bahawa pemanasan global lebih disebabkan oleh aktivitas alam seperti ini.
Sementara sebagian ahli lain berpendapat bahwa sebenarnya jumlah CO2 di atmosfer tidak cukup signifikan untuk dijadikan “kambing hitam” pemanasan global karena jumlahnya yang hanya 0.04%. Selain itu, para ahli ini juga menyatakan bahwa seluruh gas yang ada di atmosfer adalah gas rumah kaca, tanpa terkecuali dimana komposisi terbesar adalah nitrogen (78%), oksigen (21%) dan uap air (hingga 3%).
laut mempunyai peranan penting dalam siklus karbon itu karena siklus karbon sebagian besar terjadi dilaut. Menurut ahli biologi hanya 10 persen siklus carbon terjadi di darat sedangkan sisanya terjadi di laut. Jadi terganggunya siklus carbon dilautlah yang menyebabkan terjadinya pemanasan global. Banar begitu??? Coba perhatikan teori ini, nanti teman2 sendiri yang menyimpulkan “semakin tinggi suhu permukaan laut maka akan semakin rendah proses penyerapan karbon di udara oleh laut atau dengan kata lain siklus karbon terganggu”, “pemanasan global menyebabkan temperatur permukaan laut meningkat, salah satu akibatnya adalah fenonema Iklim El Nino dan La Nina”. Sekarang mana yg pertama pemanasan permukaan laut atau terganggunya siklus karbon???? Siklus Karbon
Siklus Karbon
pendapat lain mengatakan bahwa pemanasan global disebabkan oleh sinar kosmik. berdasarkan peneltian pakar2 ini. sinar kosmik yg berasal dari luar angksa mempengaruhi terciptanya awan2 di atmosfer bagian bawah. berdasarkan peneltian mereka, sinar kosmik tenyata mampu meningkatkan terjadinya pembentukkan awan di atmosfer bagian bawah, dimana semakin tinggi sinar kosmik yg masuk ke bumi, maka semain tinggi jumlah awan yg tercipta. awan memantulkan sekita 20% energi matahari kembali keluar angkasa. dengan semakin bnyaknya awan, maka energi matahari yg masuk kebumi akan semakin kecil dan bumi semakin dingin. menurut mereka pada abad 20 ini sinar kosmik yg masuk kebumi semakin sedikit, sehingga roses terciptanya awan juga semakin kecil dan akhirnya bumi semakin panas
bumi semakin panas akibat dari matahari yg semakin bergejolak. matahari dalam seabad ini sering bangat muncul bintik2 matahari akibat ledakan energi hidrogen. berdasarkan penelitian, ternyata semakin banyak jumlah bintik2 itu, maka energi panas yg dipancarkan oleh matahari juga semakin tinggi yang akan mempengaruhi juga panas di bumi.
bintik-matahari
Ternyata banyak juga penyebab dari pemanasan global. Seandainya proses2 ini terjadi bersamaan dan berkesinambungan, maka proses bencana alam akbat efek pemanasan global akan sering terjadi…
Contoh akibat pemanasan global
pemanasan-global.jpg

Pemanasan Global (catatan mengenai akibatnya)

Selama ini kita berdialektika dengan aksiom2, dikotomi, dan segala tetek bengek pembahasan ke-kini-an. Kita bicara tentang Agama, Ateisme atau Metafisika, kemudian mempertentangkannya satu sama lain dengan nyaris tanpa mendapatkan sintesis apapun dan lalu memandang sebelah mata, atau bahkan menutup mata sama sekali dengan masa depan kita atau anak cucu kita nantinya, dalam rumah besar ini; Planet Bumi. Bayangkanlah kita sedang minum teh di sebuah villa di Puncak yang hijau, atau memancing di danau Subtropis yang dikelilingi gunung bersalju. Dan bayangkan pula betapa itu mungkin hanya akan tinggal impian anak cucu kita kelak, seratus tahun atau malah lebih cepat lagi, jika kita tidak ramah pada rumah besar kita sendiri” (Vicenzo)
beruang-pg
kekeringan-pg
Mau ga mau kita harus bisa menirima dengan lapang dada klo pemanasan global itu telah terjadi. Suhu permukaan bumi telah meningkat dan kita harus waspada pada akibat2 yang akan terjadi pada masa2 yg akan datang.
Seperti yg telah ditulis diatas ternyata pemanasan global disebabkan oleh banyak hal, dan sampai saat ini faktor2 dominan penyebab pemanasan global masih diperdebatkan. Tapi yang jelas bumi lebih hangat 0.5 – 0.6 0C dari rata-rata suhu bumi 100 tahun terakhir.
Bulan januari tahun 2007 menjadi bulan januari terhangat sepanjang 100 tahun ini, dimana suhu rata2 bulan januari 2007 0.85 0C lebih tinggi dari suhu rata2 bumi bulan januari yaitu 12 0C. Dan diperkirakan tahun 2007 ini akan menjadi tahun terpanas sepanjang 100 terakhir diamana akan meningkat 0.54 0C dari suhu rata2 tahunan sebesar 14 0C. Tahun terpanas selama ini jatuh pada tahun 1998 yaitu 0.52 0C lebih panas dari suhu rata2 tahunan. dibelahan bumi bagian utara yaitu eropa timur dan rusia kenaikan suhu bulan januari adalah 4 0C dan Kanada 2.5 0C dari suhu rata2 tahunan.
Tahun 2006 sendiri merupakan tahun terpanas ke-6 selama 100 tahun ini, yaitu naik 0.42 0C dari suhu rata2 tahunan. Sedangkan kantor meteorologi Inggris menyebutkan bahwa tahun 2006 merupakan tahun terpanas di Inggris. 10 tahun terhangat pada abad 20 ini terjadi setelah tahun 1980 dan 3 tahun terhangat terjadi setelah tahun 1990.
Peningkatan suhu bumi ini sudah sangat mengkhawatirkan. Menurut sebuah konfrensi tentang perubahan iklim di inggris bila suhu bumi meningkat lebih dari 2 0C maka sebagian spesies akan punah dan bahkan ekosistem bisa hancur, kelaparan akan terjadi dimana khususnya di negara berkembang dan air bersih aka menjadi barang yang sangat langka.
Para ilmuwan memperkirakan pada tahun 2100 suhu bumi akan meningkat 1.4 – 5.8 0C. Kenaikan temperatur ini akan menyebabkan mencairnya es dikutub utara dan mnghangatkan lautan sehingga mengakibatkan meningkatnya voleme lautan serta menaikkan permukaannya sekitar 9 – 100 cm, menimbulkan banjir di daerah pantai, bahkan dapat menenggelamkan pulau-pulau. Beberapa daerah dengan iklim yang hangat akan menerima curah hujan yang lebih tinggi, tetapi tanah juga akan lebih cepat kering. Kekeringan tanah ini akan merusak tanaman bahkan menghancurkan suplai makanan di beberapa tempat di dunia. Hewan dan tanaman akan bermigrasi ke arah kutub yang lebih dingin dan spesies yang tidak mampu berpindah akan musnah. Penelitian lain mengungkapkan bahwa dalam waktu 1000 tahun yang akan datang permukaan laut akan meningkat setinggi 7 meter dari keadaan sekarang.
Berdasarkan simulasi model iklim, juga dapat diperkiarakan pada musim panas tahun 2040 es- es dikutub utara seluruhnya akan mencair bila kadar pelepasan emisi gas-gas rumah kaca tetap setinggi saat ini. Berdasarkan pemgamatan dengan menggunakan satelit pengindraan jauh, pada bulan september 2006 luas daratan es di kutub utara hanya 1.9 juta Km2 atau seluas daratan Alaska menurun sekitar 4 juta Km2 dalam kurun waktu 10 tahun.
Pemanasan global yg berhubungan langsung dengan perubahan iklim berdampak sangat luas terhadap kehidupan di bumi ini. Menurut ahli geologi sejak 1 juta tahun yg lalu sudah 10 kali suhu bumi meningkat dan selalu berkorelasi dengan peningkatan CO2 di bumi. Akan tetapi yang paling menghawatirkan adalan pemanasan yg terjadi dalam 20 tahun terakhir ini, pemanasan yg terjadi sudah melebihi pemanasan yg terjadi pada jaman medieval (1000 tahun yg lalu). pada jaman itu bumi juga mengalami pemanasan.
Saat ini, atmosfir berisi komponen utama gas rumah kaca, yaitu CO2, sebanyak 380 ppm (380 molekul per satu juta molekul). Sebelum revolusi industri terjadi, jumlah CO2 adalah 275 ppm. Agar suhu bumi tidak naik sampai 2 0C, maka kadar CO2 di atmosfer harus berada di bawah 450 ppm.
IPCC panel memperingatkan, bahwa meskipun konsentrasi gas di atmosfer tidak bertambah lagi sejak tahun 2100, iklim tetap terus menghangat selama periode tertentu akibat emisi yang telah dilepaskan sebelumnya. CO2 akan tetap berada di atmosfer selama seratus tahun atau lebih sebelum alam mampu menyerapnya kembali. Jika emisi gas rumah kaca terus meningkat, para ahli memprediksi, konsentrasi CO2 di atmosfer dapat meningkat hingga tiga kali lipat pada awal abad ke-22 bila dibandingkan masa sebelum era industri. Akibatnya, akan terjadi perubahan iklim secara dramatis. Walaupun sebenarnya peristiwa perubahan iklim ini telah terjadi beberapa kali sepanjang sejarah Bumi, manusia akan menghadapi masalah ini dengan resiko populasi yang sangat besar.
Bukti dampak dari pemanasan global akhir2 ini sudah sering ditemui. Selain menyusutnya es di kutub utara, iklim yg tidak menentu dan seringnya terjadi badai merupakan efek lain dari pemanasan global. Menurut penelitian di Belanda, anak burung koolmees yaitu burung pemakan serangga menetas jauh sebelum waktu yang seharusnya. Mereka kekurangan pangan karena belum musim ulat, sebagai akibat dari perubahan siklus iklim.
Perubahan Kondisi Glasier di Alaska (1941-2004)
Perubahan Kondisi Glasier di Alaska (1941-2004)
Perubahan kondisi Glasier Upsala di Argentina (1928-2004)
Perubahan kondisi Glasier Upsala di Argentina (1928-2004)
Kekeringan, kebakaran, munculnya berbagai macam penyakit tropis (malaria dan DB), banjir dan tanah longsor yang sering terjadi di indonesia merupakan salah satu efek dari pemanasan global, walaupun tanpa harus memungkiri ada pengaruh2 lain dari peristiwa-peristiwa itu. Pada tahun 2002 puso melanda pantura seluas 12.985 ha sehingga menurunkan produksi padi di daerah tersebut. Tahun 2003 luas sawah yang mengalami kekeringan adalah 450.000 ha dimana 100.000 ha sawah tersebut mengalami puso. Daerah Jawa -Bali terjadi peningkatan kasus malaria, dari 18 kasus per 100 ribu penduduk jadi 48 kasus per 100 ribu penduduk, tahun 1998, naik hampir tiga kali lipat. Sementara di luar Jawa Bali, terjadi peningkatan sebesar 60% dari 1998 sampai tahun 2000. banjir yang terjadi di jakatra tahun 2002 merupakan akibat dari curah yang di atas rata2, dimana curah hujan saat itu adalah 107 mm sedangkan normalnya adalah 50 mm. Tahun 2007 kemarin curah hujan juga mencapai 250 mm.

Cuaca dan Iklim

Cuaca dan iklim merupakan dua kondisi yang hampir sama tetapi berbeda pengertian khususnya terhadap kurun waktu. Cuaca merupakan bentuk awal yang dihubungkan dengan penafsiran dan pengertian akan kondisi fisik udara sesaat pada suatu lokasi dan suatu waktu, sedangkan iklim merupakan kondisi lanjutan dan merupakan kumpulan dari kondisi cuaca yang kemudian disusun dan dihitung dalam bentuk rata-rata kondisi cuaca dalam kurun waktu tertentu (Winarso, 2003). Menurut Rafi’i (1995) Ilmu cuaca atau meteorologi adalah ilmu pengetahuan yang mengkaji peristiwa-peristiwa cuaca dalam jangka waktu dan ruang terbatas, sedangkan ilmu iklim atau klimatologi adalah ilmu pengetahuan yang juga mengkaji tentang gejala-gejala cuaca tetapi sifat-sifat dan gejala-gejala tersebut mempunyai sifat umum dalam jangka waktu dan daerah yang luas di atmosfer permukaan bumi.
Trewartha and Horn (1995) mengatakan bahwa iklim merupakan suatu konsep yang abstrak, dimana iklim merupakan komposit dari keadaan cuaca hari ke hari dan elemen-elemen atmosfer di dalam suatu kawasan tertentu dalam jangka waktu yang panjang. Iklim bukan hanya sekedar cuaca rata-rata, karena tidak ada konsep iklim yang cukup memadai tanpa ada apresiasi atas perubahan cuaca harian dan perubahan cuaca musiman serta suksesi episode cuaca yang ditimbulkan oleh gangguan atmosfer yang bersifat selalu berubah, meski dalam studi tentang iklim penekanan diberikan pada nilai rata-rata, namun penyimpangan, variasi dan keadaan atau nilai-nilai yang ekstrim juga mempunyai arti penting.
Trenberth, Houghton and Filho (1995) dalam Hidayati (2001) mendefinisikan perubahan iklim sebagai perubahan pada iklim yang dipengaruhi langsung atau tidak langsung oleh aktivitas manusia yang merubah komposisi atmosfer yang akan memperbesar keragaman iklim teramati pada periode yang cukup panjang. Menurut Effendy (2001) salah satu akibat dari penyimpangan iklim adalah terjadinya fenomena El-Nino dan La-Nina. Fenomena El-Nino akan menyebabkan penurunan jumlah curah hujan jauh di bawah normal untuk beberapa daerah di Indonesia. Kondisi sebaliknya terjadi pada saat fenomena La-nina berlangsung.
Proses terjadinya cuaca dan iklim merupakan kombinasi dari variabel-variabel atmosfer yang sama yang disebut unsur-unsur iklim. Unsur-unsur iklim ini terdiri dari radiasi surya, suhu udara, kelembaban udara, awan, presipitasi, evaporasi, tekanan udara dan angin. Unsur-unsur ini berbeda dari waktu ke waktu dan dari tempat ke tempat yang disebabkan oleh adanya pengendali-pengendali iklim (Anon, ? ). Pengendali iklim atau faktor yang dominan menentukan perbedaan iklim antara wilayah yang satu dengan wilayah yang lain menurut Lakitan (2002) adalah (1) posisi relatif terhadap garis edar matahari (posisi lintang), (2) keberadaan lautan atau permukaan airnya, (3) pola arah angin, (4) rupa permukaan daratan bumi, dan (5) kerapatan dan jenis vegetasi. Gambar dibawah adalah gambar dari sistem iklim secara umum
Cuaca dan iklim muncul setelah berlangsung suatu proses fisik dan dinamis yang kompleks yang terjadi di atmosfer bumi. Kompleksitas proses fisik dan dinamis di atmosfer bumi ini berawal dari perputaran planet bumi mengelilingi matahari dan perputaran bumi pada porosnya. Pergerakan planet bumi ini menyebabkan besarnya energi matahari yang diterima oleh bumi tidak merata, sehingga secara alamiah ada usaha pemerataan energi yang berbentuk suatu sistem peredaran udara, selain itu matahari dalam memancarkan energi juga bervariasi atau berfluktuasi dari waktu ke waktu (Winarso, 2003). Perpaduan antara proses-proses tersebut dengan unsur-unsur iklim dan faktor pengendali iklim menghantarkan kita pada kenyataan bahwa kondisi cuaca dan iklim bervariasi dalam hal jumlah, intensitas dan distribusinya. Eksploitasi lingkungan yang menyebabkan terjadinya perubahan lingkungan serta pertambahan jumlah penduduk bumi yang berhubungan secara langsung dengan penambahan gas rumah kaca secara global akan meningkatkan variasi tersebut. Keadaan seperti ini mempercepat terjadinya perubahan iklim yang mengakibatkan penyimpangan iklim dari kondisi normal.
Menurut Winarso (2003) berdasarkan kajian dan pantauan dibidang iklim siklus cuaca dan iklim terpanjang adalah 30 tahun dan terpendek adalah10 tahun dimana kondisi ini dapat menunjukkan kondisi baku yang umumnya akan berguna untuk menentukan kondisi iklim per dekade. Penyimpangan iklim mungkin akan, sedang atau telah terjadi bila dilihat lebih jauh dari kondisi cuaca dan iklim yang terjadi saat ini.

Susahnya Memprediksi Hujan

Hari ini cuaca di denpasar dingin bangat. Hujan mulai tadi subuh dan berhenti siangnya. Sekarang bulan Juni, berdasarkan teori pada bulan Juni adalah masa2 musim kemarau. JJA atau Juni, Juli dan Agustus adalah musim kemarau dengan curah hujan yg rendah pada daerah2 berpola hujan munsoon apalagi untuk daerah bali dan nusa tenggara. Bali dan nusa tenggara merupakan daerah yang curah hujannya sangat di pengaruhi oleh keberadaan benua australia (Oledman, 1981) dimana pada saat periode JJA pola angin yg terjadi adalah pola angin munsoon tenggara. Angin munsoon tenggara sangat sedikit membawa uap air, sehingga wilayah yg dilewatinya mengalami musim kemarau.
Saat ini banyak sekali terjadi petani salah memulai awal musim tanam karena salah memprediksi awal musim hujan dam akhir musim kemarau. Kompas menceritakan bahwa produksi tanaman tembakau menurun akibat dari berubahnya polah hujan pada saat musim petik daun pertama.
Menurut beberapa ahli telah terjadi perubahan iklim yang salah satu indikasinya adalah perubahan pola hujan, tapi ada beberapa ahli yang menyatakan belum terjadi perubahan iklim karena, kerana perubahan pola hujan ini masih dalam taraf perubahan variabilitas saja akibat adanya anomali2 iklim seperti siklon2 tropis dan dan kejadian El Nino dan La Nina.
Hujan merupakan unsur fisik lingkungan yang paling bervariasi, terutama di daerah tropis. Boer (2003) mengatakan bahwa hujan merupakan unsur iklim yang paling penting di Indonesia karena keragamannya sangat tinggi baik menurut waktu maupun tempat, oleh karena itu kajian tentang iklim lebih banyak diarahkan pada faktor hujan.
Menurut Ana Turyanti (2006) Hujan dipandang sebagai salah satu variabel peramalan cuaca dan iklim yang sangat penting karena mempengaruhi aktivitas kehidupan manusia di berbagai sektor seperti pertanian, perhubungan, perdagangan, kesehatan, lingkungan hidup dan sebagainya. Namun demikian, hujan merupakan salah satu variabel atmosfer yang paling sulit diprediksi, dan pada saat ini masih merupakan tantangan yang besar bagi para peneliti meteorologi. Dari sejumlah model yang digunakan di dunia pada saat ini, belum satupun yang dapat memberi prediksi hujan yang cukup baik, terutama untuk wilayah katulistiwa. Wilayah ini memang memiliki tingkat non-liearitas yang tinggi, sehingga kondisi atmosfer di wilayah ini lebih sulit diprediksi dibandingkan dengan wilayah di lintang tinggi.
Kenapa? Karena faktor penyebab hujan itu sangat banyak. Secara umum keragaman hujan di Indonesia sangat dipengaruhi oleh keberadaannya di garis katulistiwa, aktifitas moonson, bentangan samudera Pasifik dan Hindia serta bentuk topografi yang sangat beragam. Gangguan siklon tropis (El-Nino, La-Nina, Madden Julian Oscillation (MJO) dan angin badai) diperkirakan juga ikut berpengaruh terhadap keragaman curah hujan.
Normalnya daerah indonesia adalah daerah bebas dari kejadian siklon tropis, dimana menurut tjasyono (2004) 65% kejadian siklon tropis terjadi di antara 10o dan 20o dari equator. Akan tetapi efek dari siklon tropis dapat mempengaruhi kondisi cuaca di sekitarnya meliputi curah hujan yang tinggi, angin kencang dan gelombang badai (strom surge). Masih dalam buku yg sama Tjasyono mengatakan bahwa sekitar 2/3 kejadian siklon tropis terjadi di belahan bumi utara.
BMG (2006) menyatakan bahwa awal musim hujan untuk tahun 2006 ini mundur akibat anomali atau penyimpangan suhu permukaan air laut di selatan Pulau Jawa dan Barat sumatera, pada saat itu suhu permukaan air lautnya masih rendah sehingga penguapan dan produksi awan masih sedikit.
Seringnya terjadi anomali atau penyimpangan ini mungkin disebabkan oleh efek pemanasan global, sehingga proses penyeimbangan panas atau suhu bumi sebagai faktor penggerak cuaca juga mengalami perubahan sehingga mengakibatkan munculnya siklon2 tropis yang tidak pada waktu dan tempatnya.
Balitklimat, pada pertengahan bulan Maret 2007 telah mengeluarkan Peta Pergeseran Permulaan Musim Kemarau 2007 terhadap Normal dan Peta Permulaan Musim Kemarau 2007 di sentra produksi padi di pulau Jawa yang didasarkan pada kondisi curah hujan 30 tahun terakhir. Berikut disajikan kedua peta tersebut.


 

 

Klasifikasi Iklim

Unsur-unsur iklim yang menunjukan pola keragaman yang jelas merupakan dasar dalam melakukan klasifikasi iklim. Unsur iklim yang sering dipakai adalah suhu dan curah hujan (presipitasi). Klasifikasi iklim umumnya sangat spesifik yang didasarkan atas tujuan penggunaannya, misalnya untuk pertanian, penerbangan atau kelautan. Pengklasifikasian iklim yang spesifik tetap menggunakan data unsur iklim sebagai landasannya, tetapi hanya memilih data unsur-unsur iklim yang berhubungan dan secara langsung mempengaruhi aktivitas atau objek dalam bidang-bidang tersebut (Lakitan, 2002).
Thornthwaite (1933) dalam Tjasyono (2004) menyatakan bahwa tujuan klasifikasi iklim adalah menetapkan pembagian ringkas jenis iklim ditinjau dari segi unsur yang benar-benar aktif terutama presipitasi dan suhu. Unsur lain seperti angin, sinar matahari, atau perubahan tekanan ada kemungkinan merupakan unsur aktif untuk tujuan khusus.
Indonesia adalah negara yang sebagian besar penduduknya bermata pencaharian sebagai petani, oleh sebab itu pengklasifikasian iklim di Indonesia sering ditekankan pada pemanfaatannya dalam kegiatan budidaya pertanian. Pada daerah tropik suhu udara jarang menjadi faktor pembatas kegiatan produksi pertanian, sedangkan ketersediaan air merupakan faktor yang paling menentukan dalam kegiatan budidaya pertanian khususnya budidaya padi.
Variasi suhu di kepulauan Indonesia tergantung pada ketinggian tempat (altitude/elevasi), suhu udara akan semakin rendah seiring dengan semakin tingginya ketinggian tempat dari permukaan laut. Suhu menurun sekitar 0.6 oC setiap 100 meter kenaikan ketinggian tempat. Keberadaan lautan disekitar kepulauan Indonesia ikut berperan dalam menekan gejolak perubahan suhu udara yang mungkin timbul (Lakitan, 2002). Menurut Hidayati (2001) karena Indonesia berada di wilayah tropis maka selisih suhu siang dan suhu malam hari lebih besar dari pada selisih suhu musiman (antara musim kemarau dan musim hujan), sedangkan di daerah sub tropis hingga kutub selisih suhu musim panas dan musim dingin lebih besar dari pada suhu harian. Kadaan suhu yang demikian tersebut membuat para ahli membagi klasifikasi suhu di Indonesia berdasarkan ketinggian tempat.
Hujan merupakan unsur fisik lingkungan yang paling beragam baik menurut waktu maupun tempat dan hujan juga merupakan faktor penentu serta faktor pembatas bagi kegiatan pertanian secara umum, oleh karena itu klasifikasi iklim untuk wilayah Indonesia (Asia Tenggara umumnya) seluruhnya dikembangkan dengan menggunakan curah hujan sebagai kriteria utama (Lakitan, 2002). Tjasyono (2004) mengungkapkan bahwa dengan adanya hubungan sistematik antara unsur iklim dengan pola tanam dunia telah melahirkan pemahaman baru tentang klasifikasi iklim, dimana dengan adanya korelasi antara tanaman dan unsur suhu atau presipitasi menyebabkan indeks suhu atau presipitasi dipakai sebagai kriteria dalam pengklasifikasian iklim.
Beberapa sistem klasifikasi iklim yang sampai sekarang masih digunakan dan pernah digunakan di Indonesia antara lain adalah:
a. Sistem Klasifikasi Koppen
Koppen membuat klasifikasi iklim berdasarkan perbedaan temperatur dan curah hujan. Koppen memperkenalkan lima kelompok utama iklim di muka bumi yang didasarkan kepada lima prinsip kelompok nabati (vegetasi). Kelima kelompok iklim ini dilambangkan dengan lima huruf besar dimana tipe iklim A adalah tipe iklim hujan tropik (tropical rainy climates), iklim B adalah tipe iklim kering (dry climates), iklim C adalah tipe iklim hujan suhu sedang (warm temperate rainy climates), iklim D adalah tipe iklim hutan bersalju dingin (cold snowy forest climates) dan iklim E adalah tipe iklim kutub (polar climates) (Safi’i, 1995).
b. Sistem Klasifikasi Mohr
Klasifikasi Mohr didasarkan pada hubungan antara penguapan dan besarnya curah hujan, dari hubungan ini didapatkan tiga jenis pembagian bulan dalam kurun waktu satu tahun dimana keadaan yang disebut bulan basah apabila curah hujan >100 mm per bulan, bulan lembab bila curah hujan bulan berkisar antara 100 – 60 mm dan bulan kering bila curah hujan < 60 mm per bulan (Anon, ?).
c. Sistem Klasifikasi Schmidt-Ferguson
Sistem iklim ini sangat terkenal di Indonesia. Menurut Irianto, dkk (2000) penyusunan peta iklim menurut klasifikasi Schmidt-Ferguson lebih banyak digunakan untuk iklim hutan. Pengklasifikasian iklim menurut Schmidt-Ferguson ini didasarkan pada nisbah bulan basah dan bulan kering seperti kriteria bulan basah dan bulan kering klsifikasi iklim Mohr. Pencarian rata-rata bulan kering atau bulan basah (X) dalam klasifikasian iklim Schmidt-Ferguson dilakukan dengan membandingkan jumlah/frekwensi bulan kering atau bulan basah selama tahun pengamatan ( åf ) dengan banyaknya tahun pengamatan (n) (Anon, ? ; Safi’i, 1995).
Schmidt-Fergoson membagi tipe-tipe iklim dan jenis vegetasi yang tumbuh di tipe iklim tersebut adalah sebagai berikut; tipe iklim A (sangat basah) jenis vegetasinya adalah hutan hujan tropis, tipe iklim B (basah) jenis vegetasinya adalah hutan hujan tropis, tipe iklim C (agak basah) jenis vegetasinya adalah hutan dengan jenis tanaman yang mampu menggugurkan daunnya dimusim kemarau, tipe iklim D (sedang) jenis vegetasi adalah hutan musim, tipe iklim E (agak kering) jenis vegetasinya hutan savana, tipe iklim F (kering) jenis vegetasinya hutan savana, tipe iklim G (sangat kering) jenis vegetasinya padang ilalang dan tipe iklim H (ekstrim kering) jenis vegetasinya adalah padang ilalang (Syamsulbahri, 1987).
d. Sistem Klasifikasi Oldeman
Klasifikasi iklim yang dilakukan oleh Oldeman didasarkan kepada jumlah kebutuhan air oleh tanaman, terutama pada tanaman padi. Penyusunan tipe iklimnya berdasarkan jumlah bulan basah yang berlansung secara berturut-turut.
Oldeman, et al (1980) mengungkapkan bahwa kebutuhan air untuk tanaman padi adalah 150 mm per bulan sedangkan untuk tanaman palawija adalah 70 mm/bulan, dengan asumsi bahwa peluang terjadinya hujan yang sama adalah 75% maka untuk mencukupi kebutuhan air tanaman padi 150 mm/bulan diperlukan curah hujan sebesar 220 mm/bulan, sedangkan untuk mencukupi kebutuhan air untuk tanaman palawija diperlukan curah hujan sebesar 120 mm/bulan, sehingga menurut Oldeman suatu bulan dikatakan bulan basah apabila mempunyai curah hujan bulanan lebih besar dari 200 mm dan dikatakan bulan kering apabila curah hujan bulanan lebih kecil dari 100 mm.
Lamanya periode pertumbuhan padi terutama ditentukan oleh jenis/varietas yang digunakan, sehingga periode 5 bulan basah berurutan dalan satu tahun dipandang optimal untuk satu kali tanam. Jika lebih dari 9 bulan basah maka petani dapat melakukan 2 kali masa tanam. Jika kurang dari 3 bulan basah berurutan, maka tidak dapat membudidayakan padi tanpa irigasi tambahan (Tjasyono, 2004).
Oldeman membagi lima zona iklim dan lima sub zona iklim. Zona iklim merupakan pembagian dari banyaknya jumlah bulan basah berturut-turut yang terjadi dalam setahun. Sedangkan sub zona iklim merupakan banyaknya jumlah bulan kering berturut-turut dalam setahun. Pemberian nama Zone iklim berdasarkan huruf yaitu zone A, zone B, zone C, zone D dan zone E sedangkan pemberian nama sub zone berdasarkana angka yaitu sub 1, sub 2, sub 3 sub 4 dan sub 5.
Zone A dapat ditanami padi terus menerus sepanjang tahun. Zone B hanya dapat ditanami padi 2 periode dalam setahun. Zone C, dapat ditanami padi 2 kali panen dalam setahun, dimana penanaman padi yang jatuh saat curah hujan di bawah 200 mm per bulan dilakukan dengan sistem gogo rancah. Zone D, hanya dapat ditanami padi satu kali masa tanam. Zone E, penanaman padi tidak dianjurkan tanpa adanya irigasi yang baik. (Oldeman, et al., 1980)


Tidak ada komentar:

Posting Komentar